
Sep 30 - Oct 2, 2024

Follow

on
https://aka.ms/azure-pg-linkedin

Extension
Development Lifecycle
in Rust
Arda Aytekin
Mon Sep 30 | 12:00 EDT

Agenda

1. Background & Context

2. Why Rust & PGRX

3. Project Structuring and Cargo Workspaces

4. Optional Dependencies and Features

5. Testing, Benchmarking and Profiling

6. Foreign Function Interface

7. IO- and CPU-bound Tasks, gRPC Communication

8. Compliance and Lifecycle Management

9. Recap

Background & Context

• AI extensions team at Azure Database for PostgreSQL
• Extension development in Rust
• Our choices and learnings

• hence, not a definitive set of best practices
• Our constraints

• Team members having different hardware/OS/setup
• Conditional enablement of different “features” (e.g., telemetry)
• Differing build and runtime systems
• Interfacing with different (low-level) libraries
• Remote API calls
• Compliance and security

Sample Project

• https://github.com/aytekinar/pgconf-nyc-2024
• A simple vector operations extension
• Only dot product and vector norm

• Visual Studio Code + Docker + Development Containers
• Dev container with Rust tooling and PG versions 14, 15 and 16

• Building an extension from scratch in 8 phases/steps

https://github.com/aytekinar/pgconf-nyc-2024

Why Rust & PGRX

Why Rust
• Safety and performance

• Ownership and lifetimes (memory safety)
• (Zero-cost) High-level abstractions (perf.)

• Toolchain (cargo)
• Unit tests, doc tests, benchmarks
• Extensible via custom commands
• Easy dependency management

• Good resources (even the compiler)
• Even though the learning curve is steep

Why PGRX
• Fully-managed development environment

• create, unit-test, run, install, package
• Target multiple PostgreSQL versions

• write once, deploy/build everywhere
• Automatic schema generation
• First-class UDF support
• Easy custom types
• Server programming interface
• Executor/planner/(sub)transaction hooks
• Logging through PostgreSQL

Project Structuring & Cargo Workspaces

• Visual Studio Code + development containers + features

• Files -> Modules -> Crates -> Packages
• Opinionated (but tidy/clean) project structuring

• Cargo workspaces
• Help manage multiple related packages developed in tandem
• Same Cargo.lock file and output directory
• No additional copies of the same dependency downloaded
• Every crate in every package uses the same version of the same dep.
• Help save space and ensure compatibility

Optional Dependencies and Features

• Features provide a mechanism for optional dependencies
and conditional compilation

• Optional dependencies are not compiled by default

• cargo-pgrx uses this approach to
• target/support different PostgreSQL versions (v12…v17)
• enable the corresponding feature of the dependency
• support building for and testing against different PG versions

Testing, Benchmarking and Profiling

• cargo [pgrx] test
• Unit testing support
• End-to-end testing support
• Documentation testing support

• [cargo] criterion
• Statistics-driven (micro-)benchmarking

• [cargo-]flamegraph and samply
• Flamegraphing/profiling tools

Foreign Function Interface

From C to Rust
• bindgen

• Automatically generates Rust FFI bindings to C

• cc
• Library to compile C/C++/assembly/CUDA files

into a static archive for Cargo to link into the
crate

• cmake
• Build dependency for running cmake to build

native libraries

• libc
• Necessary definitions for easy C interoperability

From Rust to C
• cbindgen

• Creates C/C++ headers for Rust libraries that
expose a public C API

IO-/CPU-Bound Tasks & gRPC

IO-Bound
• Tokio

• Asynchronous runtime for the Rust language
• Single-threaded and multi-threaded runtimes
• Asynchronous version of the standard library

• Tonic & Prost!
• Native gRPC client & server implementation with

async support
• Native Protocol Buffers implementation in Rust

(Prost!)

CPU-Bound
• Rayon

• Data-parallelism library
• Parallel iterators
• Expensive CPU-bound operations

• Crossbeam
• Set of tools for concurrent programming

Compliance and Lifecycle Management

• cargo pgrx test & cargo pgrx package

• cargo deny
• Advisories. Detect security vulnerabilities and unmaintained crates
• Bans. Denying specific crates and detecting duplicate versions
• Licenses. Verify that each crate has license terms you find acceptable
• Sources. Allow only known/trusted sources and/or vendored file
dependencies

• cargo udeps
• Helps find unused dependencies in Corgo.toml

Recap
• Rust

• Safety and performance
• Extensible package manager (cargo)
• Tight control via workspaces & features
• Interoperability with C
• Compliance & lifecycle management

• PGRX
• Fully-managed development environment
• Supports multiple PostgreSQL versions
• First-class UDF support & custom types
• Server programming interface
• Logging through PostgreSQL

References

Rust
• The Book
• The Cargo Book
• The Performance Book
• The Rustonomicon

https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/cargo/
https://nnethercote.github.io/perf-book/introduction.html
https://doc.rust-lang.org/nomicon/

References

Frameworks & Tools
• PGRX
• criterion, flamegraph and samply
• Tokio (IO-bound), Rayon (CPU-bound), Crossbeam, and Tonic & Prost!
• bindgen, cbindgen, cc, cmake, and libc
• opentelemetry, opentelemetry_sdk, and opentelemetry-otlp
• cargo-deny and cargo-udeps

https://github.com/pgcentralfoundation/pgrx
https://bheisler.github.io/criterion.rs/book/index.html
https://docs.rs/flamegraph
https://docs.rs/samply
https://tokio.rs/
https://docs.rs/rayon
https://docs.rs/crossbeam
https://docs.rs/tonic
https://docs.rs/prost
https://docs.rs/bindgen
https://docs.rs/cbindgen
https://docs.rs/cc
https://docs.rs/cmake
https://docs.rs/libc
https://docs.rs/opentelemetry
https://docs.rs/opentelemetry_sdk
https://docs.rs/opentelemetry-otlp
https://embarkstudios.github.io/cargo-deny/
https://github.com/est31/cargo-udeps

© Copyright Microsoft Corporation. All rights reserved.

Get your FREE socks
@ Microsoft booth

on some of our
Postgres work

TalkingPostgres.com

Save the date

A free & virtual developer event

aka.ms/posette-subscribeSubscribe to news

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Agenda
	Background & Context
	Sample Project
	Why Rust & PGRX
	Project Structuring & Cargo Workspaces
	Optional Dependencies and Features
	Testing, Benchmarking and Profiling
	Foreign Function Interface
	IO-/CPU-Bound Tasks & gRPC
	Compliance and Lifecycle Management
	Recap
	References
	References
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

		2024-10-01T10:46:20-0700
	Agreement certified by Adobe Acrobat Sign

